笼子里面有两只猪,一只大,一只小。笼子很长,一头有一个踏板,另一头是饲料的出口和食槽。每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
如果定量地来看,踩一下踏板,将有相当于10个单位的猪食流进食槽,但是踩完踏板之后跑到食槽所需要付出的“劳动”,要消耗相当于2个单位的猪食。
如果两只猪同时踩踏板,再一起跑到食槽吃,大猪吃到7个单位,小猪吃到3个单位,减去劳动耗费各自2个单位,大猪净得益5个单位,小猪净得益1个单位。
如果大猪踩踏板,小猪等着先吃,大猪再赶过去吃,大猪吃到6个单位,去掉踩踏板的劳动耗费2个单位净得4个单位,小猪也吃到4个单位。
如果小猪踩踏板,大猪等着先吃,大猪吃到9个单位,小猪吃到1个单位,再减去踩踏板的劳动耗费,小猪是净亏损1个单位。
如果大家都等待,结果是谁都吃不到。可以得出结论,唯一解是大猪踩踏板,小猪等待。
那么,两只猪各会采取什么策略?令人出乎意料的是,答案居然是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在呢?
因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
如果采用定量分析的方法,根据矩阵,“等待”是小猪的优势策略,“踩踏板”是小猪的劣势策略。先把小猪的劣势策略消去,再来看大猪的策略。